An AP-1/clathrin coat plays a novel and essential role in forming the Weibel-Palade bodies of endothelial cells

نویسندگان

  • Winnie W.Y. Lui-Roberts
  • Lucy M. Collinson
  • Lindsay J. Hewlett
  • Grégoire Michaux
  • Daniel F. Cutler
چکیده

Clathrin provides an external scaffold to form small 50-100-nm transport vesicles. In contrast, formation of much larger dense-cored secretory granules is driven by selective aggregation of internal cargo at the trans-Golgi network; the only known role of clathrin in dense-cored secretory granules formation is to remove missorted proteins by small, coated vesicles during maturation of these spherical organelles. The formation of Weibel-Palade bodies (WPBs) is also cargo driven, but these are cigar-shaped organelles up to 5 mum long. We hypothesized that a cytoplasmic coat might be required to make these very different structures, and we found that new and forming WPBs are extensively, sometimes completely, coated. Overexpression of an AP-180 truncation mutant that prevents clathrin coat formation or reduced AP-1 expression by small interfering RNA both block WPB formation. We propose that, in contrast to other secretory granules, cargo aggregation alone is not sufficient to form immature WPBs and that an external scaffold that contains AP-1 and clathrin is essential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Clathrin-mediated post-fusion membrane retrieval influences the exocytic mode of endothelial Weibel-Palade bodies

Weibel-Palade bodies (WPBs), the storage organelles of endothelial cells, are essential to normal haemostatic and inflammatory responses. Their major constituent protein is von Willebrand factor (VWF) which, following stimulation with secretagogues, is released into the blood vessel lumen as large platelet-catching strings. This exocytosis changes the protein composition of the cell surface and...

متن کامل

Content delivery to newly forming Weibel-Palade bodies is facilitated by multiple connections with the Golgi apparatus.

Weibel-Palade bodies (WPBs) comprise an on-demand storage organelle within vascular endothelial cells. It's major component, the hemostatic protein von Willebrand factor (VWF), is known to assemble into long helical tubules and is hypothesized to drive WPB biogenesis. However, electron micrographs of WPBs at the Golgi apparatus show that these forming WPBs contain very little tubular VWF compar...

متن کامل

Multigranular exocytosis of Weibel-Palade bodies in vascular endothelial cells.

Regulated exocytosis of Weibel-Palade bodies (WPBs) is a pivotal mechanism via which vascular endothelial cells initiate repair in response to injury and inflammation. Several pathways have been proposed to enable differential release of bioactive molecules from WPBs under different pathophysiologic conditions. Due to the complexity, many aspects of WPB biogenesis and exocytosis are still poorl...

متن کامل

Small GTP-binding protein Ral modulates regulated exocytosis of von Willebrand factor by endothelial cells.

Weibel-Palade bodies are endothelial cell-specific organelles, which contain von Willebrand factor (vWF), P-selectin, and several other proteins. Recently, we found that the small GTP-binding protein Ral is present in a subcellular fraction containing Weibel-Palade bodies. In the present study, we investigated whether Ral is involved in the regulated exocytosis of Weibel-Palade bodies. Activati...

متن کامل

Localization of alpha 1,3-fucosyltransferase VI in Weibel-Palade bodies of human endothelial cells.

Surface glycosylation of endothelial cells is relevant to various processes including coagulation, inflammation, metastasis, and lymphocyte homing. One of the essential sugars involved in these processes is fucose linked alpha1-->3 to N-acetylglucosamine. A family of alpha1,3-fucosyltransferases (FucTs) called FucT-III, IV, V, VI, VII, and IX is able to catalyze such fucosylations. Reverse tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 170  شماره 

صفحات  -

تاریخ انتشار 2005